5th Grade Math- Measurement \& Data, Standard 1

Multiple Choice

Identify the choice that best completes the statement or answers the question.

Solve the following problems by converting.

1. Asad needs 1 kg of salt for a project; he has 245 g of salt. How many kg does he have?
a. 02.45 kg
b. 024.5 kg
c. .0245 kg
d. 0.245 kg
2. Asad needs 1 kg of salt for a project; he has 245 g of salt. How much more does he need to reach his goal of 1 kg ?
a. 755 g
b. 75.5 g
c. 7.55 g
d. 0.755 g
3. Brady needs to create a wall 5 feet long with lego building blocks. Each lego block is 1 inch long, how many blocks does he need to create a wall one block high?
a. 58
b. 55
c. 5
d. 60
4. Brady needs to create a wall 5 feet long with lego building blocks. Each lego block is 1 inch long, how many blocks does he need to create a wall two blocks high?
a. 120
b. 80
c. 40
d. 60
5. Emily's toy train has 22 sections of track that are each 1 ft long. How many yards of train track does she have?
a. 0.733333333
b. 7.33333333
c. 733.333333
d. 73.3333333
6. Cameron is traveling and sees a sign that says, "Next gas station 9 kilometers"; he knows he has enough gas to go 8000 m . When he runs out of gas how far would he have to walk to get to the station?
a. 10 m
b. 100 m
c. 1000 m
d. $10,000 \mathrm{~m}$
7. Dawson is told that he must run 2.5 miles: How many feet will he have to run?
a. 13 ft
b. 132 ft
c. 1320 ft
d. $13,200 \mathrm{ft}$
8. Brandon's cat weighs 150 oz . How many pounds is that?
a. 93.75 lbs
c. 9.375 lbs
b. 09375 lbs
d. . 009375 lbs

Answer 1: D
245g
First convert grams to kilograms using the conversion factor of $\frac{\mathrm{kg}}{1000 \mathrm{~g}}$. $245 \mathrm{~g} \cdot \frac{\mathrm{~kg}}{1000 \mathrm{~g}}$
Cancel the grams units (g).
$245 \mathrm{~g} \cdot \frac{\mathrm{~kg}}{1000 \mathrm{~g}}$
Remove the cancelled units (g) from the expression.
$245 \cdot \frac{\mathrm{~kg}}{1000}$
Multiply 245 by $\frac{\mathrm{kg}}{1000}$ to get $\frac{245 \mathrm{~kg}}{1000}$.
245 kg
1000
Divide 245 by 1000 to get 0.245 .

Answer 2: A
245 g
First convert grams to kilograms using the conversion factor of $\frac{\mathrm{kg}}{1000 \mathrm{~g}}$.
$245 \mathrm{~g} \cdot \frac{\mathrm{~kg}}{1000 \mathrm{~g}}$
Cancel the grams units (g).
$245 \mathrm{~g} \cdot \frac{\mathrm{~kg}}{1000 \mathrm{~g}}$
Remove the cancelled units (g) from the expression.
$245 \cdot \frac{\mathrm{~kg}}{1000}$
Multiply 245 by $\frac{\mathrm{kg}}{1000}$ to get $\frac{245 \mathrm{~kg}}{1000}$.
$\frac{245 \mathrm{~kg}}{1000}$
Divide 245 by 1000 to get 0.245

Now take 1000 g (which equals 1 kg) \& subtract it by 0.245 g
$=755 \mathrm{~g}$ more needed to reach his goal.

Answer 3: D
5 ft
Convert feet to inches using the conversion factor of $\frac{12 \mathrm{in}}{\mathrm{ft}}$.
$5 \mathrm{ft} \cdot \frac{12 \mathrm{in}}{\mathrm{ft}}$
Cancel the feet units (ft).
5ft $\cdot \frac{12 \mathrm{in}}{\text { ft }}$
Remove the cancelled units (ft) from the expression.
$5 \cdot 12$ in
Multiply 5 by 12 in to get 60 in . (or blocks)

Answer 4: A
5 ft
Convert feet to inches using the conversion factor of $\frac{12 \mathrm{in}}{\mathrm{ft}}$.
$5 \mathrm{ft} \cdot \frac{12 \mathrm{in}}{\mathrm{ft}}$
Cancel the feet units (ft).
5形. $\frac{12 \text { in }}{\text { ft }}$
Remove the cancelled units (ft) from the expression.
$5 \cdot 12$ in
Multiply 5 by 12 in to get 60 in . (or blocks)
That will give you a wall 1 block high.
Take the 60 blocks and multiply it by the number of blocks high (2)
=120

Answer 5: B
22 ft
Convert feet to yards using the conversion factor of $\frac{\mathrm{yds}}{3 \mathrm{ft}}$.
$22 \mathrm{ft} \cdot \frac{\mathrm{yds}}{3 \mathrm{ft}}$
Cancel the feet units (ft).
22抽. $\frac{\mathrm{yds}}{3 \text { ft }}$
Remove the cancelled units (ft) from the expression
$22 \cdot \frac{\mathrm{yds}}{3}$
Multiply 22 by $\frac{\mathrm{yds}}{3}$ to get $\frac{22 \mathrm{yds}}{3}$.
22yds
3
Divide 22 by 3 to get 7.33333333 .
$7.33333333 y d s$

Answer 6: C
9km
Convert kilometers to meters using the conversion factor of $\frac{1000 \mathrm{~m}}{\mathrm{~km}}$
$9 \mathrm{~km} \cdot \frac{1000 \mathrm{~m}}{\mathrm{~km}}$
Cancel the kilometer units (km).
$9 \mathrm{~km} \cdot \frac{1000 \mathrm{~m}}{\mathrm{~km}}$
Remove the cancelled units (km) from the expression
9-1000m
Multiply 9 by 1000 m to get 9000 m .
9000m
Since he only has enough gas to go 8000 m and 1 kilometer is 9000 m subtract 8000 from 9000.
He will have to walk another 1000 m to reach the station.

Answer 7: D
2.5 mi

Convert miles to feet using the conversion factor of $\frac{5280 \mathrm{ft}}{\mathrm{mi}}$.
Convert miles to feet using the conversion factor of mi
$2.5 \mathrm{mi} \cdot \frac{5280 \mathrm{ft}}{\mathrm{mi}}$
Cancel the miles units (mi).
2.5 मti $\cdot \frac{5280 \mathrm{ft}}{\mathrm{nti}}$

Remove the cancelled units (mi) from the expression.
2.5 -5280ft

Multiply 2.5 by 5280 ft to get 13200 ft .
13200ft
Answer 8: C
150oz
lbs
Convert ounces to pounds using the conversion factor of $160 z$
$150 \mathrm{oz} \cdot \frac{\mathrm{lbs}}{16 \mathrm{oz}}$
Cancel the ounces units (oz).
$15002 \cdot \frac{\mathrm{lbs}}{16.02}$
Remove the cancelled units (oz) from the expression.
$150 \cdot \frac{\text { lbs }}{16}$
Multiply 150 by $\frac{\mathrm{lbs}}{16}$ to get $\frac{150 \mathrm{lbs}}{16}$
$\frac{150 \mathrm{lbs}}{16}$
Divide 150 by 16 to get 9.375 .
9.375Ibs

