The Pythagorean Theorem describes the relationship between the lengths of the legs and the hypotenuse of a right triangle.

$$a^{2} + b^{2} = c^{2}$$

The relationship $a^2 + b^2 = c^2$ can be shown visually.

Given the length of legs a and b, the length of the hypotenuse can be found using the formula $a^2 + b^2 = c^2$.

Given the length of legs a and b, the length of the hypotenuse can be found using the formula $a^2 + b^2 = c^2$.

The Pythagorean Theorem will work for any right triangle.

$$c^{2} = a^{2} + b^{2}$$
 $c^{2} = 5^{2} + 7^{2}$
 $c^{2} = 25 + 49$
 $c^{2} = 74$
 $c = \sqrt{74}$
 $c \approx 8.6023$

The Distance Formula is a variant of the Pythagorean Theorem.

You may calculate the distance between two points using the the Distance Formula.

The Distance Formula: Given the two points P1 (x_1, y_1) and P2 (x_2, y_2) , the distance between these points is given by the formula:

distance =
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$P_{1} = (x_{1}, y_{1}) \quad P_{2} = (x_{2}, y_{2})$$

$$P_{1} = (2, 8) \quad P_{2} = (7, 3)$$

$$d = \sqrt{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}}$$

$$d = \sqrt{(7 - 2)^{2} + (3 - 8)^{2}}$$

$$d = \sqrt{(5)^{2} + (-5)^{2}}$$

$$d = \sqrt{25} + 25$$

$$d = \sqrt{50}$$

$$d \approx 7.0711$$