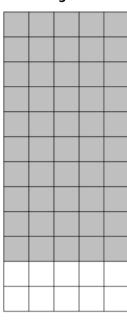
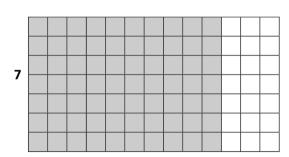
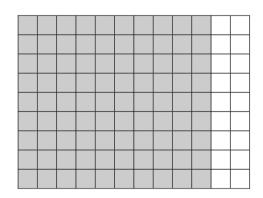

1. Label the side lengths of the shaded and unshaded rectangles. Then, find the total area of the large rectangle by adding the areas of the 2 smaller rectangles.


a.

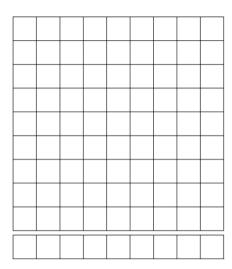
4


= _____ square units

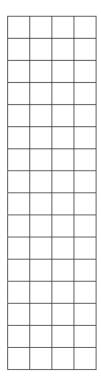
12 × 5 = (+ 2) × 5
= (×5) + (2 × 5)
=	+ 10
=	square units


2

c.


 $7 \times 13 = 7 \times (_{---} + 3)$ = (7 × ____) + (7 × 3) = ____ + ____ = _____ square units

d.



9 × 12 = 9 × (_____ + ____) = (9 × ____) + (9 × ____) = _____ + ____ = _____ square units

2. Finn imagines 1 more row of nine to find the total area of 9×9 rectangle. Explain how this could help him solve 9×9 .

3. Shade an area to break the 16×4 rectangle into 2 smaller rectangles. Then, find the sum of the areas of the 2 smaller rectangles to find the total area. Explain your thinking.

Answer Key

- 1. a. 40, 32; 72
 - b. 10; 10; 10; 50; 60
 - c. 10, 3; 10; 10; 70, 21; 91
 - d. 9, 10, 2; 10, 2; 10, 2; 90, 18; 108
- 2. Answers will vary.
- 3. Rectangle shaded; 64 sq units; answers will vary.