Name	_ Date	

- 1. Represent the following expressions with disks, regrouping as necessary, writing a matching expression, and recording the partial products vertically.
 - a. 3 × 24

tens	ones

b. 3×42

hundreds	tens	ones

c. 4×34

hundreds	tens	ones

- 2. Represent the following expressions with disks, regrouping as necessary. To the right, record the partial products vertically.
 - a. 4×27

hundreds	tens	ones

b. 5×42

hundreds	tens	ones

3. Cindy says she found a shortcut for doing multiplication problems. When she multiplies 3 × 24, she says, "3 × 4 is 12 ones, or 1 ten and 2 ones. Then, there's just 2 tens left in 24, so add it up, and you get 3 tens and 2 ones." Do you think Cindy's shortcut works? Explain your thinking in words and justify your response using a model or partial products.

Answer Key

- 1. Disks drawn and partial products recorded
 - a. $3 \times 2 \text{ tens} + 3 \times 4 \text{ ones}$; 72
 - b. $3 \times 4 \text{ tens} + 3 \times 2 \text{ ones}$; 126
 - c. 4×3 tens + 4×4 ones; 136

- 2. Disks drawn and partial products recorded
 - a. 108
 - b. 210
- 3. No; explanations will vary.