1. Draw an area model for each pair of fractions, and use it to compare the two fractions by writing >, <, or = on the line. The first two have been partially done for you. Each rectangle represents 1.

a.  $\frac{1}{2}$  \_\_\_<  $\frac{3}{5}$ 

 $\frac{5}{10} < \frac{6}{10}$  so  $\frac{1}{2} < \frac{3}{5}$ 

 $\frac{1 \times 5}{2 \times 5} = \frac{5}{10} \qquad \frac{3 \times 2}{5 \times 2} = \frac{6}{10}$ 





d.  $\frac{2}{7}$  \_\_\_\_\_\_\_ $\frac{3}{5}$ 

2. Rename the fractions, as needed, using multiplication in order to compare each pair of fractions by writing >, <, or =.

a. 
$$\frac{2}{3}$$
  $\frac{2}{4}$ 

b. 
$$\frac{4}{7}$$
  $\frac{1}{2}$ 

c. 
$$\frac{5}{4}$$
  $\frac{9}{8}$ 

d. 
$$\frac{8}{12}$$
  $\frac{5}{8}$ 

3. Use any method to compare the fractions. Record your answer using >, <, or =.

a. 
$$\frac{8}{9}$$
  $\frac{2}{3}$ 

b. 
$$\frac{4}{7}$$
  $\frac{4}{5}$ 

c. 
$$\frac{3}{2}$$
  $\frac{9}{6}$ 

d. 
$$\frac{11}{7}$$
  $\frac{5}{3}$ 

4. Explain which method you prefer using to compare fractions. Provide an example using words, pictures, or numbers.

## **Answer Key**

- a. Area models prove  $\frac{1}{2} < \frac{3}{5}$ 
  - b. Area models prove  $\frac{2}{3} < \frac{3}{4}$
  - c. Area models prove  $\frac{4}{6} > \frac{5}{8}$
  - d. Area models prove  $\frac{2}{7} < \frac{3}{5}$
  - e. Area models prove  $\frac{4}{6} = \frac{6}{9}$
  - Area models prove  $\frac{4}{5} < \frac{10}{12}$
- 2. a.

  - c. >
  - d. >

- 3. a. >
  - b. <
  - c. =
  - d. <
- 4. Explanations will vary.