- 1. Each rectangle represents 1. Draw horizontal lines to decompose each rectangle into the fractional units as indicated. Use the model to give the shaded area as a sum and as a product of unit fractions. Use parentheses to show the relationship between the number sentences. The first one has been partially done for you.
 - a. Tenths

$$\frac{2}{5} = \frac{4}{5}$$

$$\frac{1}{5} + \frac{1}{5} = \left(\frac{1}{10} + \frac{1}{10}\right) + \left(\frac{1}{10} + \frac{1}{10}\right) = \frac{4}{5}$$

$$\left(\frac{1}{10} + \frac{1}{10}\right) + \left(\frac{1}{10} + \frac{1}{10}\right) = \left(2 \times -\right) + \left(2 \times -\right) = \frac{4}{5}$$

$$\frac{2}{5} = 4 \times - = \frac{4}{5}$$

b. Eighths

c. Fifteenths

2. Draw area models to show the decompositions represented by the number sentences below. Express each as a sum and product of unit fractions. Use parentheses to show the relationship between the number sentences.

a.
$$\frac{2}{3} = \frac{4}{6}$$

b.
$$\frac{4}{5} = \frac{8}{10}$$

- 3. Step 1: Draw an area model for a fraction with units of thirds, fourths, or fifths.
 - Step 2: Shade in more than one fractional unit.
 - Step 3: Partition the area model again to find an equivalent fraction.
 - Step 4: Write the equivalent fractions as a number sentence. (If you have written a number sentence like this one already in this homework, start over.)

Answer Key

- 1. a. 4, 10, 1, 1, 10, $\frac{1}{10}$, $\frac{1}{10}$, 10, $\frac{1}{10}$, 10
 - b. Decomposed horizontally to show eighths; $\frac{1}{4} + \frac{1}{4} = \left(\frac{1}{8} + \frac{1}{8}\right) + \left(\frac{1}{8} + \frac{1}{8}\right) = \frac{4}{8}$, $\left(\frac{1}{8} + \frac{1}{8}\right) + \left(\frac{1}{8} + \frac{1}{8}\right) + \left$
 - c. Decomposed horizontally to show fifteenths; $\frac{1}{5} + \frac{1}{5} + \frac{1}{5} + \frac{1}{5} = \left(\frac{1}{15} + \frac{1}{15} + \frac{1}{15}\right) + \left(\frac{1}{15} + \frac{1}{15} + \frac{1}{15}\right) = \left(3 \times \frac{1}{15}\right) + \left(3 \times \frac{1}{15}\right) + \left(3 \times \frac{1}{15}\right) + \left(3 \times \frac{1}{15}\right) = \frac{12}{15}, \frac{4}{5} = 12 \times \frac{1}{15} = \frac{12}{15}$
- 2. a. Area model shows $\frac{2}{3} = \frac{4}{6}$; $\frac{1}{3} + \frac{1}{3} = \left(\frac{1}{6} + \frac{1}{6}\right) + \left(\frac{1}{6} + \frac{1}{6}\right) = \frac{4}{6}$, $\left(\frac{1}{6} + \frac{1}{6}\right) + \left(\frac{1}{6} + \frac{1}{6}\right) = \left(2 \times \frac{1}{6}\right) + \left(2 \times \frac{1}{6}\right) = \left(2 \times \frac{1}{6}\right) = \left(2 \times \frac{1}{6}\right) + \left(2 \times \frac{1}{6}\right) = \left(2 \times \frac{1}{6}\right) = \left(2 \times \frac{1}{6}\right) + \left(2 \times \frac{1}{6}\right) = \left(2 \times \frac{1}{6}\right) = \left(2 \times \frac{1}{6}\right) + \left(2 \times \frac{1}{6}\right) = \left(2 \times \frac{1}{6}$
 - b. $\left(2 \times \frac{1}{6}\right) = \frac{4}{6}, \frac{2}{3} = 4 \times \frac{1}{6} = \frac{4}{6}$
 - c. Area model shows $\frac{4}{5} = \frac{8}{10}$; $\frac{1}{5} + \frac{1}{5} + \frac{1}{5} + \frac{1}{5} = \left(\frac{1}{10} + \frac{1}{10}\right) + \left(\frac{1}{10} + \frac{1}{10}\right) + \left(\frac{1}{10} + \frac{1}{10}\right) + \left(\frac{1}{10} + \frac{1}{10}\right) = \frac{8}{10}$,
 - d. $\left(\frac{1}{10} + \frac{1}{10}\right) + \left(\frac{1}{10} + \frac{1}{10}\right) + \left(\frac{1}{10} + \frac{1}{10}\right) + \left(\frac{1}{10} + \frac{1}{10}\right) = \left(2 \times \frac{1}{10}\right) + \left(2 \times \frac{1}{10}\right) +$
 - e. $\left(2 \times \frac{1}{10}\right) = \frac{8}{10}, \frac{4}{5} = 6 \times \frac{1}{10} = \frac{6}{10}$
- 3. Answers will vary.