1. Use the coordinate plane below to complete the following tasks.

- b. Plot point *R* (7, 7).
- c. Draw \overline{PR} .
- d. Explain how you know $\angle PQR$ is a right angle without measuring it.

- e. Compare the coordinates of points *P* and *Q*. What is the difference of the *x*-coordinates? The *y*-coordinates?
- f. Compare the coordinates of points P and R. What is the difference of the x-coordinates? The y-coordinates?
- g. What is the relationship of the differences you found in (e) and (f) to the triangles of which these two segments area a part?

2. Use the coordinate plane below to complete the following tasks.

- b. Plot point *D* (3, $2\frac{1}{2}$).
- c. Draw \overline{BD} .
- d. Explain how you know $\angle BCD$ is a right angle without measuring it.

g. What is the relationship of the differences you found in (e) and (f) to the triangles of which these two segments area a part?

3. \overrightarrow{ST} contains the following points.

S: (2, 3)

T: (9, 6)

a. Give the coordinates of a pair of points, U and V, such that $\overrightarrow{ST} \perp \overrightarrow{UV}$.

Answer Key

- a. \overline{PQ} drawn
 - Point R plotted
 - \overline{PR} drawn
 - Explanations will vary. d.
 - x-coordinates: 4; y-coordinates: 1
 - x-coordinates: 1; y-coordinates: 4
 - Explanations will vary.

- a. \overline{BC} drawn 2.
 - b. Point D plotted
 - \overline{BD} drawn
 - Explanations will vary.
 - *x*-coordinates: $1\frac{1}{2}$; *y*-coordinates: 1
 - x-coordinates: 1; y-coordinates: $1\frac{1}{2}$
 - Explanations will vary.
- 3. Answers will vary.