Distance on the Coordinate Plane

Use absolute value to show the lengths of \overline{AB} , \overline{BC} , \overline{CD} , \overline{DE} , and \overline{EF} .

Line Segment	Point	Point	Distance	Proof
\overline{AB}				
\overline{BC}				
\overline{CD}				
\overline{DE}				
\overline{EF}				

1. Given the pairs of points, determine whether the segment that joins them will be horizontal, vertical, or neither.

a. X(3,5) and Y(-2,5)

b. M(-4, 9) and N(4, -9)

c. E(-7,1) and F(-7,4)

2. Complete the table using absolute value to determine the lengths of the line segments.

Line Segment	Point	Point	Distance	Proof
\overline{AB}	(-3,5)	(7,5)		
\overline{CD}	(1, -3)	(-6, -3)		
\overline{EF}	(2, -9)	(2, -3)		
\overline{GH}	(6,1)	(6, 16)		
ĪK	(-3,0)	(-3, 12)		

Complete the table using the diagram and absolute value to determine the lengths of the line segments.

	Line Segment	Point	Point	Distance	Proof
•	\overline{AB}				
	BC				
	\overline{CD}				
	\overline{DE}				
	\overline{EF}				
	\overline{FA}				

Complete the table using the diagram and absolute value to determine the lengths of the line segments.

Line Segment	Point	Point	Distance	Proof
\overline{AB}				
\overline{CG}				
CF				
\overline{GF}				
DН				
DE				
₩				
\overline{KL}				

- Name two points in different quadrants that form a vertical line segment that is 8 units in length.
- Name two points in the same quadrant that form a horizontal line segment that is 5 units in length.

Use absolute value to show the lengths of \overline{AB} , \overline{BC} , \overline{CD} , \overline{DE} , and \overline{EF} .

Line Segment	Point	Point	Distance	Proof
\overline{AB}	(-4, 8)	(2,8)	6	-4 + 2
BC	(2,8)	(6,8)	4	6 - 2
<u>CD</u>	(6,8)	(6,-3)	11	8 + -3
DE	(6, -3)	(6,-6)	3	-6 - -3
EF	(6, -6)	(-8, -6)	14	6 + -8

Given the pairs of points, determine whether the segment that joins them will be horizontal, vertical, or neither.

a.
$$X(3,5)$$
 and $Y(-2,5)$

Horizontal

b.
$$M(-4,9)$$
 and $N(4,-9)$

Neither

c.
$$E(-7,1)$$
 and $F(-7,4)$

Vertical

Complete the table using absolute value to determine the lengths of the line segments.

Line Segment	Point	Point	Distance	Proof
\overline{AB}	(-3, 5)	(7,5)	10	-3 + 7
<u></u> <u> </u>	(1,-3)	(-6, -3)	7	1 + -6
EF	(2,-9)	(2,-3)	6	-9 - - 3
GH	(6,1)	(6, 16)	15	16 - 1
ĪK	(-3,0)	(-3, 12)	12	12 + 0

3. Complete the table using the diagram and absolute value to determine the lengths of the line segments.

Line Segment	Point	Point	Distance	Proof
\overline{AB}	(-7, 8)	(5,8)	12	-7 + 5
BC	(5,8)	(5,5)	3	8 - 5
CD	(5,5)	(-2, 5)	7	5 + -2
\overline{DE}	(-2,5)	(-2, -4)	9	5 + -4
EF	(-2, -4)	(-7, -4)	5	-7 - - 2
FA	(-7,-4)	(-7,8)	12	-4 + 8

4. Complete the table using the diagram and absolute value to determine the lengths of the line segments.

Line Segment	Point	Point	Distance	Proof
\overline{AB}	(-7, 8)	(8,8)	15	-7 + 8 = 15
<u></u> <u>CG</u>	(7,3)	(3,3)	4	7 - 3 = 4
CF	(7,3)	(-5,3)	12	7 + -5 = 12
\overline{GF}	(3,3)	(-5,3)	8	3 + -5 = 8
DН	(5, -6)	(0,-6)	5	5 + 0 = 5
DE	(5, -6)	(-1,-6)	6	5 + -1 = 6
ĦJ	(0,-6)	(0,8)	14	-6 + 8 =14
<u>KL</u>	(-3,8)	(-3,3)	5	8 - 3 = 5

5. Name two points in different quadrants that form a vertical line segment that is 8 units in length.

Answers will vary. One possible solution is (2,5) and (2,-3).

6. Name two points in the same quadrant that form a horizontal line segment that is 5 units in length.

Answers will vary. One possible solution is (-4, -11) and (-9, -11).