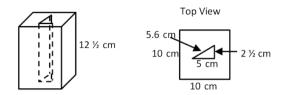

lame	Date

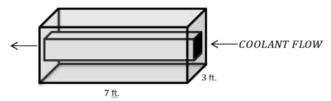

Volume and Surface Area

Lawrence is designing a cooling tank that is a square prism. A pipe in the shape of a smaller $2 \text{ ft.} \times 2 \text{ ft.}$ square prism passes through the center of the tank as shown in the diagram, through which a coolant will flow.



- a. What is the volume of the tank including the cooling pipe?
- b. What is the volume of coolant that fits inside the cooling pipe?
- c. What is the volume of the shell (the tank not including the cooling pipe)?
- d. Find the surface area of the cooling pipe.

A child's toy is constructed by cutting a right triangular prism out of a right rectangular prism.



- Calculate the volume of the rectangular prism. a.
- b. Calculate the volume of the triangular prism.
- Calculate the volume of the material remaining in the rectangular prism. c.
- d. What is the largest number of triangular prisms that can be cut from the rectangular prism?
- What is the surface area of the triangular prism (assume there is no top or bottom)? e.
- A landscape designer is constructing a flower bed in the shape of a right trapezoidal prism. He needs to run three identical square prisms through the bed for drainage.

- What is the volume of the bed without the drainage pipes? a.
- b. What is the total volume of the three drainage pipes?
- What is the volume of soil that can fit in the bed once the pipes are in place, assuming the amount of soil is c. filled to $\frac{3}{4}$ of the height of the planter?
- d. What is the height of the soil? If necessary, round to the nearest tenth.
- If the bed is made of 8 ft. × 4 ft. pieces of plywood, how many pieces of plywood will the landscape designer e. need to construct the bed without the drainage pipes?
- If the plywood needed to construct the bed costs \$35 per 8 ft. \times 4 ft. piece, the drainage pipes cost \$125 each, f. and the soil costs \$1.25/cubic foot, how much does it cost to construct and fill the bed?

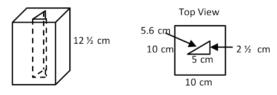
Lawrence is designing a cooling tank that is a square prism. A pipe in the shape of a smaller $2 \text{ ft.} \times 2 \text{ ft.}$ square prism passes through the center of the tank as shown in the diagram, through which a coolant will flow.

a. What is the volume of the tank including the cooling pipe?

7 ft.
$$\times$$
 3 ft. \times 3 ft. = 63 ft³

b. What is the volume of coolant that fits inside the cooling pipe?

2 ft.
$$\times$$
 2 ft. \times 7 ft. = 28 ft³


c. What is the volume of the shell (the tank not including the cooling pipe)?

$$63 \, ft^3 - 28 \, ft^3 = 35 \, ft^3$$

d. Find the surface area of the cooling pipe.

2 ft.
$$\times$$
 7 ft. \times 4 = 56 ft²

1. A child's toy is constructed by cutting a right triangular prism out of a right rectangular prism.

a. Calculate the volume of the rectangular prism.

$$10 \text{ cm} \times 10 \text{ cm} \times 12\frac{1}{2} \text{ cm} = 1250 \text{ cm}^3$$

b. Calculate the volume of the triangular prism.

$$\frac{1}{2} \Big(5 \text{ cm} \times 2 \ \frac{1}{2} \text{ cm} \Big) \times 12 \frac{1}{2} \text{ cm} = 78 \frac{1}{8} \text{ cm}^3$$

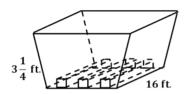
c. Calculate the volume of the material remaining in the rectangular prism.

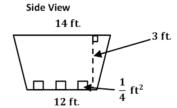
$$1250~cm^3 - 78~\frac{1}{8}~cm^3 = 1171\frac{7}{8}~cm^3$$

Scaffolding:

parts (c) and (d).

If students have mastered this concept easily, assign only


What is the largest number of triangular prisms that can be cut from the rectangular prism?


$$\frac{1250 \text{ cm}^3}{78 \frac{1}{8} \text{ cm}^3} = 16$$

What is the surface area of the triangular prism (assume there is no top or bottom)?

$$5.6~cm \times 12\frac{1}{2}~cm + 2\frac{1}{2}~cm \times 12\frac{1}{2}~cm + 5~cm \times 12~\frac{1}{2}~cm = 163\frac{3}{4}~cm^2$$

A landscape designer is constructing a flower bed in the shape of a right trapezoidal prism. He needs to run three identical square prisms through the bed for drainage.

What is the volume of the bed without the drainage pipes?

$$\frac{1}{2}$$
(14 ft. + 12 ft.) × 3 ft. × 16 ft. = 624 ft³

What is the total volume of the three drainage pipes?

$$3\left(\frac{1}{4} \text{ ft}^2 \times 16 \text{ ft.}\right) = 12 \text{ ft}^3$$

What is the volume of soil that can fit in the bed once the pipes are in place, assuming the amount of soil is filled to $\frac{3}{4}$ of the height of the planter?

$$\frac{3}{4} \left(624 \text{ ft}^3\right) - 12 \text{ ft}^3 = 456 \text{ ft}^3 \text{ or } \left[\frac{1}{2} (14 \text{ ft.} + 12 \text{ ft}) \times \frac{3}{4} (3 \text{ ft.}) \times 16 \text{ ft.}\right] - 12 \text{ ft}^3 = 456 \text{ ft}^3$$

What is the height of the soil? If necessary, round to the nearest tenth.

$$\frac{456 \text{ ft}^3}{\frac{1}{2} (14 \text{ ft.} + 12 \text{ ft.}) \times 16 \text{ ft.}} \approx 2.2 \text{ ft. or } \frac{3}{4} (3 \text{ ft.}) = 2.25 \text{ ft.}$$

If the bed is made of 8 ft. × 4 ft. pieces of plywood, how many pieces of plywood will the landscape designer need to construct the bed without the drainage pipes?

$$2\left(3\frac{1}{4} \text{ ft.} \times 16 \text{ ft.}\right) + 12 \text{ ft.} \times 16 \text{ ft.} + 2\left(\frac{1}{2} (12 \text{ ft.} + 14 \text{ ft.}) \times 3 \text{ ft.}\right) = 374 \text{ ft}^2$$

$$374~\text{ft}^2 \div \frac{(8~\text{ft.} \times 4~\text{ft.})}{\text{piece of plywood}} = 11.7 \text{, or } 12~\text{pieces of plywood}$$

If the plywood needed to construct the bed costs \$35 per 8 ft.imes 4 ft. piece, the drainage pipes cost \$125 each, and the soil costs \$1.25/cubic foot, how much does it cost to construct and fill the bed?

$$\frac{\$35}{piece\ of\ plywood}(12\ pieces\ of\ plywood) + \frac{\$125}{pipe}(3\ pipes) + \frac{\$1.25}{ft^3\ soil}(456\ ft^3\ soil) = \$1,365.00$$