## **Properties of Inequalities**

- 1. Given the initial inequality -4 < 7, state possible values for c that would satisfy the following inequalities.
  - a. c(-4) < c(7)
  - b. c(-4) > c(7)
  - c. c(-4) = c(7)
- 2. Given the initial inequality 2 > -4, identify which operation preserves the inequality symbol and which operation reverses the inequality symbol. Write the new inequality after the operation is performed.
  - Multiply both sides by -2.
  - Add -2 to both sides.
  - Divide both sides by 2.
  - Multiply both sides by  $-\frac{1}{2}$ .
  - Subtract -3 from both sides.

© 2014 Common Core, Inc. Some rights reserved. commoncore.org

- 1. For each problem, use the properties of inequalities to write a true inequality statement. The two integers are -2 and -5.
  - a. Write a true inequality statement.
  - b. Subtract -2 from each side of the inequality. Write a true inequality statement.
  - c. Multiply each number by -3. Write a true inequality statement.
- 2. On a recent vacation to the Caribbean, Kay and Tony wanted to explore the ocean elements. One day they went in a submarine 150 feet below sea level. The second day they went scuba diving 75 feet below sea level.
  - a. Write an inequality comparing the submarine's elevation and the scuba diving elevation.
  - b. If they only were able to go one-fifth of the capable elevations, write a new inequality to show the elevations they actually achieved.
  - c. Was the inequality symbol preserved or reversed? Explain.
- 3. If a is a negative integer, then which of the number sentences below is true? If the number sentence is not true, give a reason.
  - a. 5 + a < 5
  - b. 5 + a > 5
  - c. 5 a > 5
  - d. 5 a < 5
  - e. 5a < 5
  - f. 5a > 5
  - g. 5 + a > a
  - h. 5 + a < a
  - i. 5-a>a
  - j. 5 a < a
  - k. 5a > a
  - I. 5a < a

Given the initial inequality -4 < 7, state possible values for c that would satisfy the following inequalities.

a. 
$$c(-4) < c(7)$$

b. 
$$c(-4) > c(7)$$

c. 
$$c(-4) = c(7)$$

$$c = 0$$

- Given the initial inequality 2>-4, identify which operation preserves the inequality symbol and which operation reverses the inequality symbol. Write the new inequality after the operation is performed.
  - Multiply both sides by -2.

Inequality symbol is reversed.

$$2 > -4$$

$$2(-2) < -4(-2) \\$$

$$-4 < 8$$

Add -2 to both sides.

Inequality symbol is preserved.

$$2 > -4$$

$$2 + (-2) > -4 + (-2)$$

$$0 > -6$$

Divide both sides by 2.

Inequality symbol is preserved.

$$2 > -4$$

$$2\div 2>-4\div 2$$

$$1 > -2$$

Multiply both sides by  $-\frac{1}{2}$ .

Inequality symbol is reversed.

$$2 > -4$$

$$2\left(-\frac{1}{2}\right)<-4\left(-\frac{1}{2}\right)$$

$$-1 < 2$$

Subtract -3 from both sides. e.

Inequality symbol is preserved.

$$\begin{array}{c} 2>-4 \\ 2-(-3)>-4-(-3) \\ 5>-1 \end{array}$$

- For each problem, use the properties of inequalities to write a true inequality statement. The two integers are -2 and -5.
  - Write a true inequality statement.

$$-5 < -2$$

Subtract -2 from each side of the inequality. Write a true inequality statement.

$$-7 < -4$$

Multiply each number by -3. Write a true inequality statement.

- On a recent vacation to the Caribbean, Kay and Tony wanted to explore the ocean elements. One day they went in a submarine 150 feet below sea level. The second day they went scuba diving 75 feet below sea level.
  - Write an inequality comparing the submarine's elevation and the scuba diving elevation.

$$-150 < -75$$

If they only were able to go one-fifth of the capable elevations, write a new inequality to show the elevations they actually achieved.

$$-30 < -15$$

Was the inequality symbol preserved or reversed? Explain.

The inequality symbol was preserved because the number that was multiplied to both sides was NOT negative.

If a is a negative integer, then which of the number sentences below is true? If the number sentence is not true, give a reason.

a. 
$$5 + a < 5$$

$$\mathsf{b.} \qquad \mathsf{5} + \mathsf{a} > \mathsf{5}$$

True.

False because adding a negative number to 5 will decrease 5, which will not be greater than 5.

c. 5-a>5

True.

d. 5 - a < 5

> False because subtracting a negative number is adding a number to 5, which will be larger than

5a < 5

True.

f. 5a > 5

> False because a negative number multiplied by a positive number is negative, which will be less than 5.

5 + a > a

True.

5 + a < a

False because adding 5 to a negative number is greater than the negative number itself.

5-a>a

True.

5-a < aj.

> False because subtracting a negative number is the same as adding the number, which is greater than the negative number itself.

5a > a

False because a negative number multiplied by a 5 is negative and will be 5 times smaller than  $\alpha$ .

5a < aI.

True.