Numbers Raised to the Zeroth Power

1. Simplify the following expression as much as possible.

$$\frac{4^{10}}{4^{10}} \cdot 7^0 =$$

2. Let a and b be two numbers. Use the distributive law and then the definition of zeroth power to show that the numbers $a^0 + b^0$ a^0 and $a^0 + b^0$ b^0 are equal.

Let x, y be numbers $(x, y \neq 0)$. Simplify each of the following expressions of numbers.

1. $\frac{y^{12}}{v^{12}} =$

 $9^{15} \cdot \frac{1}{9^{15}} =$

2.

3.

7 123456.789 4 0 =

 $2^2 \cdot \frac{1}{2^5} \cdot 2^5 \cdot \frac{1}{2^2} =$

5.

$$\frac{x^{41}}{y^{15}} \cdot \frac{y^{15}}{x^{41}} =$$

1. Simplify the following expression as much as possible.

$$\frac{4^{10}}{4^{10}} \cdot 7^0 = 4^{10-10} \cdot 1 = 4^0 \cdot 1 = 1 \cdot 1 = 1$$

Let a and b be two numbers. Use the distributive law and then the definition of zeroth power to show that the numbers $a^0 + b^0 a^0$ and $a^0 + b^0 b^0$ are equal.

$$a^{0} + b^{0} \ a^{0} = a^{0} \cdot a^{0} + b^{0} \cdot a^{0}$$

$$= a^{0+0} + a^{0}b^{0}$$

$$= a^{0} + a^{0}b^{0}$$

$$= 1 + 1 \cdot 1$$

$$= 1 + 1$$

$$= 2$$

$$a^{0} + b^{0} b^{0} = a^{0} \cdot b^{0} + b^{0} \cdot b^{0}$$

$$= a^{0}b^{0} + b^{0+0}$$

$$= a^{0}b^{0} + b^{0}$$

$$= 1 \cdot 1 + 1$$

$$= 1 + 1$$

$$= 2$$

Since both numbers are equal to 2, they are equal.

Let x, y be numbers $(x, y \neq 0)$. Simplify each of the following expressions of numbers.

1.	
	$\frac{y^{12}}{y^{12}} = y^{12-12}$
	$=y^0$
	= 1

3.

$$9^{15} \cdot \frac{1}{9^{15}} = \frac{9^{15}}{9^{15}}$$

$$= 9^{15-15}$$

$$= 9^{0}$$

$$= 1$$

2.

7 123456.789
4
 0 =
= 7^{0} 123456.789 $^{4\times0}$
= 7^{0} 123456.789 0
= 1

$$2^{2} \cdot \frac{1}{2^{5}} \cdot 2^{5} \cdot \frac{1}{2^{2}} = \frac{2^{2}}{2^{2}} \cdot \frac{2^{5}}{2^{5}}$$
$$= 2^{2-2} \cdot 2^{5-5}$$
$$= 2^{0} \cdot 2^{0}$$
$$= 1$$

5.
$$\frac{x^{41}}{y^{15}} \cdot \frac{y^{15}}{x^{41}} = \frac{x^{41} \cdot y^{15}}{y^{15} \cdot x^{41}}$$
$$= \frac{x^{41}}{x^{41}} \cdot \frac{y^{15}}{y^{15}}$$
$$= x^{41-41} \cdot y^{15-15}$$
$$= x^{0} \cdot y^{0}$$
$$= 1$$