Numbers in Exponential Form Raised to a Power

Write each answer as a base raised to a power or as the product of bases raised to powers that is equivalent to the given one.

1.
$$9^{3-6} =$$

2.
$$113^2 \times 37 \times 51^{4/3} =$$

3. Let
$$x, y, z$$
 be numbers. $x^2yz^{4/3} =$

4. Let
$$x, y, z$$
 be numbers and let m, n, p, q be positive integers. $x^m y^n z^{p-q} =$

5.
$$\frac{4^8}{5^8} =$$

- 1. Show (prove) in detail why $2 \cdot 3 \cdot 7^{-4} = 2^4 3^4 7^4$.
- 2. Show (prove) in detail why $xyz^4 = x^4y^4z^4$ for any numbers x, y, z.
- 3. Show (prove) in detail why $xyz^n = x^ny^nz^n$ for any numbers x, y, and z and for any positive integer n.

Write each answer as a base raised to a power or as the product of bases raised to powers that is equivalent to the given

1.
$$9^{3} \ ^{6} =$$

$$9^{3} \ ^{6} = 9^{6 \times 3} = 9^{18}$$

2.
$$113^2 \times 37 \times 51^{4} =$$

$$113^2 \times 37 \times 51^{4-3} = 113^2 \times 37 \times 51^{4-3}$$
 (associative law)
 $= 113^2 \times 37 \times 51^{4-3}$ (because $xy^n = x^n y^n$ for all numbers x, y)
 $= 113^2 \times 37^3 \times 51^{4-3}$ (because $xy^n = x^n y^n$ for all numbers x, y)
 $= 113^6 \times 37^3 \times 51^{12}$ (because $x^{m-n} = x^{mn}$ for all numbers x)

3. Let x, y, z be numbers. $x^2yz^{4/3} =$

$$x^2yz^4$$
 $^3 = x^2 \times y \times z^4$ 3 (associative law)
 $= x^2 \times y \times z^4$ 3 (because $xy \times z^4 \times z^4$ (because $xy \times z^4 \times z^4 \times z^4$ (because $xy \times z^4 \times z^4$

4. Let x, y, z be numbers and let m, n, p, q be positive integers. $x^m y^n z^{p-q} =$

$$x^m y^n z^{p \ q} = x^m \times y^n \times z^{p \ q}$$
 (associative law)
 $= x^m \times y^n \ q \times z^{p \ q}$ (because $xy^n = x^n y^n$ for all numbers x, y)
 $= x^m \ q \times y^n \ q \times z^{p \ q}$ (because $xy^n = x^n y^n$ for all numbers x, y)
 $= x^{mp} \times y^{nq} \times z^{pq}$ (because $x^m \ n = x^{mn}$ for all numbers x)
 $= x^{mq} y^{nq} z^{pq}$

5.
$$\frac{4^8}{5^8} =$$
 4^8 4

1. Show (prove) in detail why $2 \cdot 3 \cdot 7^4 = 2^4 3^4 7^4$.

 $=2^43^47^4$

$$2 \cdot 3 \cdot 7^{4} = 2 \cdot 3 \cdot 7 \quad 2 \cdot 3 \cdot 7 \quad 2 \cdot 3 \cdot 7 \quad 2 \cdot 3 \cdot 7$$

$$= 2 \cdot 2 \cdot 2 \cdot 2 \quad 3 \cdot 3 \cdot 3 \cdot 3 \quad 7 \cdot 7 \cdot 7 \cdot 7$$

By definition

By repeated use of the commutative and associative properties

By definition

2. Show (prove) in detail why $xyz^4 = x^4y^4z^4$ for any numbers x, y, z.

The left side of the equation, xyz^4 , means (xyz)(xyz)(xyz)(xyz). Using the commutative and associative properties of multiplication, we can write (xyz)(xyz)(xyz)(xyz) as (xxxx)(yyy)(zzzz), which in turn can be written as $x^4y^4z^4$, which is what the right side of the equation states.

3. Show (prove) in detail why $xyz^n = x^ny^nz^n$ for any numbers x, y, and z and for any positive integer n.

Beginning with the left side of the equation, xyz^n means $(xyz) \cdot (xyz) \cdot (xyz) \cdot (xyz)$. Using the commutative and

 $\text{associative properties of multiplication, } (xyz) \cdot (xyz) \cdot (xyz) \cdot (xyz) \text{ can be rewritten as } (x \cdot x \cdots x) \cdot (y \cdot y \cdots y) \cdot (z \cdot z \cdots z) \\ \text{n times} \qquad \text{n times} \qquad \text{n times}$

and finally, $x^ny^nz^n$, which is what the right side of the equation states. We can also prove this equality by a different method, as follows. Beginning with the right side, $x^ny^nz^n$ means $(x \cdot x \cdots x) \ (y \cdot y \cdots y) \ (z \cdot z \cdots z)$, which n times n times n times n times

by the commutative property of multiplication can be rewritten as $(xyz) \cdot (xyz) \cdots (xyz)$. Using exponential n times

notation, $(xyz) \cdot (xyz) \cdots (xyz)$ can be rewritten as xyz^n , which is what the left side of the equation states.