Existence and Uniqueness of Square and Cube Roots

Find the positive value of \boldsymbol{x} that makes each equation true. Check your solution.

- 1. $x^2 = 225$
 - a. Explain the first step in solving this equation.
 - b. Solve and check your solution.

2. $x^3 = 512$

3. $x^2 = 361^{-1}$

4. $x^3 = 1000^{-1}$

Find the positive value of x that makes each equation true. Check your solution.

- 1. What positive value of x makes the following equation true: $x^2 = 289$? Explain.
- 2. A square shaped park has an area of 400 ft². What are the dimensions of the park? Write and solve an equation.
- 3. A cube has a volume of 64 in³. What is the measure of one of its sides? Write and solve an equation.
- 4. What positive value of x makes the following equation true: $125 = x^3$? Explain.
- 5. $x^2 = 441^{-1}$ Find the positive value of x that makes the equation true.
 - a. Explain the first step in solving this equation.
 - b. Solve and check your solution.
- 6. $x^3 = 125^{-1}$ Find the positive value of x that makes the equation true.
- 7. The area of a square is 196 in². What is the length of one side of the square? Write and solve an equation, then check your solution.
- 8. The volume of a cube is 729 cm³. What is the length of one side of the cube? Write and solve an equation, then check your solution.
- 9. What positive value of x would make the following equation true: $19 + x^2 = 68$?

Find the positive value of x that makes each equation true. Check your solution.

- 1. $x^2 = 225$
 - Explain the first step in solving this equation.

The first step is to take the square root of both sides of the equation.

Solve and check your solution.

$$x^2 = 225$$
 Check:
 $\sqrt{x^2} = \sqrt{225}$ $x = \sqrt{225}$ $x = 15$ $225 = 225$ $x = 15$

2. $x^3 = 512$

$$x^3 = 512$$
 Check:
 $\sqrt[3]{x^3} = \sqrt[3]{512}$ $8^3 = 512$
 $x = \sqrt[3]{512}$ $512 = 512$
 $x = 8$

3. $x^2 = 361^{-1}$

$$x^2 = 361^{-1}$$
 Check:
 $\sqrt{x^2} = \sqrt{361^{-1}}$ $(19^{-1})^2 = 361^{-1}$
 $x = \sqrt{361^{-1}}$ $19^{-2} = 2536$
 $x = \sqrt{\frac{1}{361}}$ $\frac{1}{19^2} = 361^{-1}$
 $x = \frac{1}{19}$ $\frac{1}{361} = 361^{-1}$
 $x = 19^{-1}$

4. $x^3 = 1,000^{-1}$

$$x^{3} = 1,000^{-1}$$
 Check:
 $\sqrt[3]{x^{3}} = \sqrt[3]{1,000^{-1}}$ $(10^{-1})^{3} = 1,000^{-1}$
 $x = \sqrt[3]{1,000}$ $10^{-3} = 1,000^{-1}$
 $x = \sqrt[3]{\frac{1}{1,000}}$ $\frac{1}{10^{3}} = 1,000^{-1}$
 $x = \frac{1}{10}$ $\frac{1}{1,000} = 1,000^{-1}$
 $x = 10^{-1}$

Find the positive value of x that makes each equation true. Check your solution.

What positive value of x makes the following equation true: $x^2 = 289$? Explain.

$$x^2 = 289$$
 Check:
 $\sqrt{x^2} = \sqrt{289}$ $17^2 = 289$
 $x = \sqrt{289}$ $289 = 289$
 $x = 17$

To solve the equation, I need to find the positive value of x so that when it is squared, it is equal to 289. Therefore, I can take the square root of both sides of the equation. The square root of x^2 , $\sqrt{x^2}$, is x because $x^2 = x \cdot x$. The square root of 289, $\sqrt{289}$, is 17 because 289 = 17 · 17. Therefore, x = 17.

A square shaped park has an area of $400~{
m ft^2}$. What are the dimensions of the park? Write and solve an equation.

$$x^2 = 400$$
 Check: $\sqrt{x^2} = \sqrt{400}$ $x = \sqrt{400}$ $x = 20$ $x = 20$

The square park is 20 ft. in length and 20 ft. in width.

A cube has a volume of 64 in³. What is the measure of one of its sides? Write and solve an equation.

$$x^{3} = 64$$
 Check:
 $\sqrt[3]{x^{3}} = \sqrt[3]{64}$ $4^{3} = 64$
 $x = \sqrt[3]{64}$ $64 = 64$
 $x = 4$

The cube has a side length of 4 in.

What positive value of x makes the following equation true: $125 = x^3$? Explain.

125 =
$$x^3$$
 Check:
 $\sqrt[3]{125} = \sqrt[3]{x^3}$ 125 = 5^3
 $\sqrt[3]{125} = x$ 125 = 125
 $5 = x$

To solve the equation, I need to find the positive value of x so that when it is cubed, it is equal to 125. Therefore, I can take the cube root of both sides of the equation. The cube root of x^3 , $\sqrt[3]{x^3}$, is x because $x^3 = x \cdot x \cdot x$. The cube root of 125, $\sqrt[3]{125}$, is 5 because $125 = 5 \cdot 5 \cdot 5$. Therefore, x = 5.

- 5. $x^2 = 441^{-1}$ Find the positive value of x that makes the equation true.
 - a. Explain the first step in solving this equation.

The first step is to take the square root of both sides of the equation.

b. Solve and check your solution.

$$x^{2} = 441^{-1}$$

$$\sqrt{x^{2}} = \sqrt{441^{-1}}$$

$$x = \sqrt{441^{-1}}$$

$$x = \sqrt{\frac{1}{441}}$$

$$x = \frac{1}{21}$$

$$x = 21^{-1}$$
Check:
$$(21^{-1})^{2} = 441^{-1}$$

$$\frac{1}{21^{2}} = 441^{-1}$$

$$\frac{1}{441} = 441^{-1}$$

$$441^{-1} = 441^{-1}$$

6. $x^3 = 125^{-1}$ Find the positive value of x that makes the equation true.

$$x^{3} = 125^{-1}$$
 Check:
 $\sqrt[3]{x^{3}} = \sqrt[3]{125^{-1}}$ $(5^{-1})^{3} = 125^{-1}$
 $x = \sqrt[3]{125^{-1}}$ $5^{-3} = 125^{-1}$
 $x = \sqrt[3]{\frac{1}{125}}$ $\frac{1}{5^{3}} = 125^{-1}$
 $x = \frac{1}{5}$ $\frac{1}{125} = 125^{-1}$
 $x = 5^{-1}$ $125^{-1} = 125^{-1}$

The area of a square is 196 in². What is the length of one side of the square? Write and solve an equation, then
check your solution.

Let x represent the length of one side of the square.

$$x^{2} = 196$$
 Check:
 $\sqrt{x^{2}} = \sqrt{196}$ $14^{2} = 196$
 $x = \sqrt{196}$ $196 = 196$

The length of one side of the square is 14 in.

The volume of a cube is 729 cm³. What is the length of one side of the cube? Write and solve an equation, then check your solution.

Let x represent the length of one side of the cube.

$$x^{3} = 729$$
 Check:
 $\sqrt[3]{x^{3}} = \sqrt[3]{729}$ $9^{3} = 729$
 $x = \sqrt[3]{729}$ $729 = 729$

The length of one side of the cube is 9 cm.

What positive value of x would make the following equation true: $19 + x^2 = 68$?

$$19 + x^{2} = 68$$

$$19 - 19 + x^{2} = 68 - 19$$

$$x^{2} = 49$$

$$x = 7$$

The positive value for x that makes the equation true is 7.