Name			
INAIIIC			

Date

Comparison of Numbers Written in Scientific Notation and Interpreting Scientific Notation Using Technology

1. Compare 2.01×10^{15} and 2.8×10^{13} . Which number is larger?

2. The wavelength of the color red is about 6.5×10^{-9} m. The wavelength of the color blue is about 4.75×10^{-9} m. Show that the wavelength of red is longer than the wavelength of blue.

- 1. Write out a detailed proof of the fact that, given two numbers in scientific notation, $a \times 10^n$ and $b \times 10^n$, a < b, if and only if $a \times 10^n < b \times 10^n$.
 - a. Let A and B be two positive numbers, with no restrictions on their size. Is it true that $A \times 10^{-5} < B \times 10^{5}$?
 - b. Now, if $A \times 10^{-5}$ and $B \times 10^{5}$ are written in scientific notation, is it true that $A \times 10^{-5} < B \times 10^{5}$? Explain.
- 2. The mass of a neutron is approximately 1.674927×10^{-27} kg. Recall that the mass of a proton is 1.672622×10^{-27} kg. Explain which is heavier.
- 3. The average lifetime of the Z boson is approximately 3×10^{-25} seconds, and the average lifetime of a neutral rho meson is approximately 4.5×10^{-24} seconds.
 - a. Without using the theorem from today's lesson, explain why the neutral rho meson has a longer average lifetime.
 - b. Approximately how much longer is the lifetime of a neutral rho meson than a Z boson?

Compare 2.01×10^{15} and 2.8×10^{13} . Which number is larger?

$$2.01 \times 10^{15} = 2.01 \times 10^{2} \times 10^{13} = 201 \times 10^{13}$$

Since 201 > 2.8, we have $201 \times 10^{13} > 2.8 \times 10^{13}$, and since $201 \times 10^{13} = 2.01 \times 10^{15}$, we conclude $2.01 \times 10^{15} > 2.8 \times 10^{13}$.

The wavelength of the color red is about 6.5×10^{-9} m. The wavelength of the color blue is about 4.75×10^{-9} m. Show that the wavelength of red is longer than the wavelength of blue.

We only need to compare 6.5 and 4.75:

 $6.5 \times 10^{-9} = 650 \times 10^{-7}$ and $4.75 \times 10^{-9} = 475 \times 10^{-7}$, so we see that 650 > 475. Therefore, $6.5 \times 10^{-9} > 4.75 \times 10^{-9}$.

Write out a detailed proof of the fact that, given two numbers in scientific notation, $a \times 10^n$ and $b \times 10^n$, a < b, if and only if $a \times 10^n < b \times 10^n$.

Because $10^n > 0$, we can use inequality (A) (i.e., (1) above) twice to draw the necessary conclusions. First, if a < b, then by inequality (A), $a \times 10^n < b \times 10^n$. Second, given $a \times 10^n < b \times 10^n$, we can use inequality (A) again to show a < b by multiplying each side of $a \times 10^n < b \times 10^n$ by 10^{-n} .

Let A and B be two positive numbers, with no restrictions on their size. Is it true that $A \times 10^{-5} < B \times 10^{5}$?

No, it is not true that $A \times 10^{-5} < B \times 10^{5}$. Using inequality (A), we can write $A \times 10^{-5} \times 10^{5} < B \times 10^{5} \times 10^{5}$, which is the same as $A < B \times 10^{10}$. To disprove the statement, all we would need to do is find a value of A that exceeds $B \times 10^{10}$.

Now, if $A \times 10^{-5}$ and $B \times 10^{5}$ are written in scientific notation, is it true that $A \times 10^{-5} < B \times 10^{5}$? Explain.

Yes, since the numbers are written in scientific notation, we know that the restrictions for A and B are $1 \le A < 10$ and $1 \le B < 10$. The maximum value for A, when multiplied by 10^{-5} , will still be less than 1. The minimum value of B will produce a number at least 10^5 in size.

The mass of a neutron is approximately 1.674927×10^{-27} kg. Recall that the mass of a proton is 1.672622×10^{-27} kg. Explain which is heavier.

Since both numbers have a factor of 10^{-27} , we only need to look at 1.674927 and 1.672622. When we multiply each number by 10^6 , we get

 1.674927×10^6 and 1.672622×10^6 ,

which is the same as

1,674,927 and 1,672,622.

Now that we are looking at whole numbers, we can see that 1,674,927 > 1,672,622 (by (2b) above), which means that $1.674927 \times 10^{-27} > 1.672622 \times 10^{-27}$. Therefore, the mass of a neutron is heavier.

- The average lifetime of the Z boson is approximately 3×10^{-25} seconds, and the average lifetime of a neutral rho meson is approximately 4.5×10^{-24} seconds.
 - Without using the theorem from today's lesson, explain why the neutral rho meson has a longer average lifetime.

Since $3 \times 10^{-25} = 3 \times 10^{-1} \times 10^{-24}$, we can compare $3 \times 10^{-1} \times 10^{-24}$ and 4.5×10^{-24} . Based on Example 3 or by use of (1) above, we only need to compare 3×10^{-1} and 4.5, which is the same as 0.3 and 4.5. If we multiply each number by 10, we get whole numbers 3 and 45. Since 3 < 45, then $3 \times 10^{-25} <$ 4.5×10^{-24} . Therefore, the neutral rho meson has a longer average lifetime.

Approximately how much longer is the lifetime of a neutral rho meson than a Z boson?

45:3 or 15 times longer.