| Name | Date |  |
|------|------|--|
|      |      |  |

# **Constant Rates Revisited**

1. Water flows out of Pipe A at a constant rate. Pipe A can fill 3 buckets of the same size in 14 minutes. Write a linear equation that represents the situation.

2. The figure below represents the rate at which Pipe B can fill the same sized buckets.



Which pipe fills buckets faster? Explain.

- Train A can travel a distance of 500 miles in 8 hours. Assuming the train travels at a constant rate, write the linear equation that represents the situation.
- b. The figure represents the constant rate of travel for Train B.



Which train is faster? Explain.

- a. Natalie can paint 40 square feet in 9 minutes. Assuming she paints at a constant rate, write the linear equation that represents the situation.
- b. The table of values below represents the area painted by Steven for a few selected time intervals. Assume Steven is painting at a constant rate.

| Minutes (x) | Area Painted $(y)$ |
|-------------|--------------------|
| 3           | 10                 |
| 5           | $\frac{50}{3}$     |
| 6           | 20                 |
| 8           | $\frac{80}{3}$     |

Who paints faster? Explain.

## 3.

- a. Bianca can run 5 miles in 41 minutes. Assuming she runs at a constant rate, write the linear equation that represents the situation.
- b. The figure below represents Cynthia's constant rate of running.



Who runs faster? Explain.

- Geoff can mow an entire lawn of 450 square feet in 30 minutes. Assuming he mows at a constant rate, write the linear equation that represents the situation.
- The figure represents Mark's constant rate of b. mowing a lawn.

Who mows faster? Explain.



- 5.
- Juan can walk to school, a distance of 0.75 miles, in 8 minutes. Assuming he walks at a constant rate, write the linear equation that represents the situation.
- The figure below represents Lena's constant rate of walking. b.



Who walks faster? Explain.

1. Water flows out of Pipe A at a constant rate. Pipe A can fill 3 buckets of the same size in 14 minutes. Write a linear equation that represents the situation.

Let y represent the total number of buckets that Pipe A can fill in x minutes. We can write  $\frac{y}{x} = \frac{3}{14}$  and  $y = \frac{3}{14}x$ .

2. The figure below represents the rate at which Pipe B can fill the same sized buckets.



Which pipe fills buckets faster? Explain.

Pipe A fills the same sized buckets faster than Pipe B. The slope of the graph for Pipe B is  $\frac{1}{5}$ , the slope or rate for Pipe A is  $\frac{3}{14}$ . When you compare the slopes, you see that  $\frac{3}{14} > \frac{1}{5}$ .

Students practice writing constant rate problems as linear equations in two variables. Students determine which of two proportional relationships is greater.

1.

a. Train A can travel a distance of 500 miles in 8 hours. Assuming the train travels at a constant rate, write the linear equation that represents the situation.

Let y represent the total number of miles Train A travels in x minutes. We can write  $\frac{y}{x} = \frac{500}{8}$  and  $y = \frac{125}{2}x$ .

b. The figure represents the constant rate of travel for Train B.

Which train is faster? Explain.

Train B is faster than Train A. The slope or rate for Train A is  $\frac{125}{2}$ , and the slope of the line for Train B is  $\frac{200}{3}$ . When you compare the slopes, you see that t  $\frac{200}{3} > \frac{125}{2}$ .



- 2.
- a. Natalie can paint 40 square feet in 9 minutes. Assuming she paints at a constant rate, write the linear equation that represents the situation.

Let y represent the total square feet Natalie can paint in x minutes. We can write  $\frac{y}{x} = \frac{40}{9}$ , and  $y = \frac{40}{9}x$ .

b. The table of values below represents the area painted by Steven for a few selected time intervals. Assume Steven is painting at a constant rate.

| Minutes (x) | Area Painted (y) |
|-------------|------------------|
| 3           | 10               |
| 5           | $\frac{50}{3}$   |
| 6           | 20               |
| 8           | 80 3             |

### Who paints faster? Explain.

Natalie paints faster. Using the table of values, I can find the slope that represents Steven's constant rate of painting:  $\frac{10}{3}$ . The slope or rate for Natalie is  $\frac{40}{9}$ . When you compare the slopes, you see that  $\frac{40}{9} > \frac{10}{3}$ .

- 3.
- a. Bianca can run 5 miles in 41 minutes. Assuming she runs at a constant rate, write the linear equation that represents the situation.

Let y represent the total number of miles Bianca can run in x minutes. We can write  $\frac{y}{x} = \frac{5}{41}$ , and  $y = \frac{5}{41}x$ .

#### b. The figure below represents Cynthia's constant rate of running.



#### Who runs faster? Explain.

Cynthia runs faster. The slope of the graph for Cynthia is  $\frac{1}{7}$ , and the slope or rate for Nicole is  $\frac{5}{41}$ . When you compare the slopes, you see that  $\frac{1}{7} > \frac{5}{41}$ .

#### 4.

Geoff can mow an entire lawn of 450 square feet in 30 minutes. Assuming he mows at a constant rate, write the linear equation that represents the situation.

Let y represent the total number of square feet Geoff can mow in x minutes. We can write  $\frac{y}{x} = \frac{450}{30}$ , and y = 15x.

The figure represents Mark's constant rate of mowing a lawn.

Who mows faster? Explain.

Geoff mows faster. The slope of the graph for Mark is  $\frac{14}{2} = 7$ , and the slope or rate for Geoff is  $\frac{430}{30} = 15$ . When you compare the slopes, you see that 15 > 7.



Juan can walk to school, a distance of 0.75 miles, in 8 minutes. Assuming he walks at a constant rate, write the linear equation that represents the situation.

Let y represent the total distance in miles that Juan can walk in x minutes. We can write  $\frac{y}{x} = \frac{0.75}{8}$ , and  $y = \frac{3}{32}x.$ 

The figure below represents Lena's constant rate of walking.



Who walks faster? Explain.

Lena walks faster. The slope of the graph for Lena is  $\frac{1}{9}$ , and the slope of the equation for Juan is  $\frac{0.75}{8}$ , or  $\frac{3}{32}$ . When you compare the slopes, you see that  $\frac{1}{9} > \frac{3}{32}$ .