Linear Equations in Two Variables

- 1. Is the point (1,3) a solution to the linear equation 5x 9y = 32? Explain.
- 2. Find three solutions for the linear equation 4x 3y = 1, and plot the solutions as points on a coordinate plane.

x	Linear equation: $4x - 3y = 1$	у

- 1. Consider the linear equation $x \frac{3}{2}y = -2$.
 - Will you choose to fix values for x or y? Explain.
 - b. Are there specific numbers that would make your computational work easier? Explain.
 - Find five solutions to the linear equation $x \frac{3}{2}y = -2$, and plot the solutions as points on a coordinate plane. c.

x	Linear equation: $x - \frac{3}{2}y = -2$	у

- Find five solutions for the linear equation $\frac{1}{3}x + y = 12$, and plot the solutions as points on a coordinate plane.
- Find five solutions for the linear equation $-x + \frac{3}{4}y = -6$, and plot the solutions as points on a coordinate plane.
- Find five solutions for the linear equation 2x + y = 5, and plot the solutions as points on a coordinate plane.
- Find five solutions for the linear equation 3x 5y = 15, and plot the solutions as points on a coordinate plane.

1. Is the point (1,3) a solution to the linear equation 5x - 9y = 32? Explain.

No, (1,3) is not a solution to 5x - 9y = 32 because 5(1) - 9(3) = 5 - 27 = -22, and $-22 \neq 32$.

2. Find three solutions for the linear equation 4x - 3y = 1, and plot the solutions as points on a coordinate plane.

x	Linear equation: $4x - 3y = 1$	у
1	4(1) - 3y = 1 $4 - 3y = 1$ $-3y = -3$ $y = 1$	1
4	4x - 3(5) = 1 $4x - 15 = 1$ $4x = 16$ $x = 4$	5
7	4(7) - 3y = 1 $28 - 3y = 1$ $-3y = -27$ $y = 9$	9

Students practice finding and graphing solutions for linear equations that are in standard form.

- 1. Consider the linear equation $x \frac{3}{2}y = -2$.
 - a. Will you choose to fix values for x or y? Explain.

If I fix values for y, it will make the computations easier. Solving for x can be done in one step.

b. Are there specific numbers that would make your computational work easier? Explain.

Values for y that are multiples of 2 will make the computations easier. When I multiply $\frac{3}{2}$ by a multiple of 2, I will get a whole number.

Find five solutions to the linear equation $x-rac{3}{2}y=-2$, and plot the solutions as points on a coordinate

x	Linear equation: $x - \frac{3}{2}y = -2$	у
1	$x - \frac{3}{2}(2) = -2$ $x - 3 = -2$ $x - 3 + 3 = -2 + 3$ $x = 1$	2
4	$x - \frac{3}{2}(4) = -2$ $x - 6 = -2$ $x - 6 + 6 = -2 + 6$ $x = 4$	4
7	$x - \frac{3}{2}(6) = -2$ $x - 9 = -2$ $x - 9 + 9 = -2 + 9$ $x = 7$	6
10	$x - \frac{3}{2}(8) = -2$ $x - 12 = -2$ $x - 12 + 12 = -2 + 12$ $x = 10$	8
13	$x - \frac{3}{2}(10) = -2$ $x - 15 = -2$ $x - 15 + 15 = -2 + 15$ $x = 13$	10

Find five solutions for the linear equation $\frac{1}{3}x + y = 12$, and plot the solutions as points on a coordinate plane.

x	Linear equation: $\frac{1}{3}x + y = 12$	у
3	$\frac{1}{3}(3) + y = 12$ $1 + y = 12$ $y = 11$	11
6	$\frac{1}{3}(6) + y = 12$ $2 + y = 12$ $y = 10$	10
9	$\frac{1}{3}(9) + y = 12$ $3 + y = 12$ $y = 9$	9
12	$\frac{1}{3}(12) + y = 12$ $4 + y = 12$ $y = 8$	8
15	$\frac{1}{3}(15) + y = 12$ $5 + y = 12$ $y = 7$	7

Find five solutions for the linear equation $-x + \frac{3}{4}y = -6$, and plot the solutions as points on a coordinate plane.

	Linear equation:	
x	$-x + \frac{3}{4}y = -6$	y
	4	
	$-x + \frac{3}{4}(4) = -6$	
	-x + 3 = -6	
9	-x + x + 3 = -6 + x	4
	3 = -6 + x	
	3+6=-6+6+x	
	9 = x	
	$-x + \frac{3}{4}(8) = -6$	
	·	
	-x + 6 = -6	
12	-x + x + 6 = -6 + x	8
	6 = -6 + x	
	6+6 = -6+6+x $12 = x$	
	$-x + \frac{3}{4}(12) = -6$	
	-x + 9 = -6	
15	-x + x + 9 = -6 + x	12
	9 = -6 + x	
	9+6=-6+6+x	
	15 = x	
	$-x + \frac{3}{4}(16) = -6$	
	_	
	-x + 12 = -6	
18	-x + x + 12 = -6 + x	16
	12 = -6 + x	
	12 + 6 = -6 + 6 + x	
	18 = x	
	$-x + \frac{3}{4}(20) = -6$	
	-x + 15 = -6	
21	-x + x + 15 = -6 + x	20
	15 = -6 + x	
	15 + 6 = -6 + 6 + x	
	21 = x	

4.	Find five solutions for the linear equa	ation $2x + y = 5$, and	plot the solutions as r	oints on a coordinate plane.
⊸.	Tilla live solutions for the linear equi	$au_{0}u_{1} = x_{1} + y_{1} = y_{1} = y_{1}$	piot tile solutions as p	Joints on a coordinate plane.

x	Linear equation: $2x + y = 5$	у
1	2(1) + y = 5 $2 + y = 5$ $y = 3$	3
2	2(2) + y = 5 $4 + y = 5$ $y = 1$	1
3	2(3) + y = 5 $6 + y = 5$ $y = -1$	-1
4	2(4) + y = 5 $8 + y = 5$ $y = -3$	-3
5	2(5) + y = 5 $10 + y = 5$ $y = -5$	-5

Find five solutions for the linear equation 3x - 5y = 15, and plot the solutions as points on a coordinate plane.

		<u> </u>
x x	Linear equation:	y
	3x - 5y = 15	
	3x - 5(1) = 15	
	3x - 5 = 15	
	3x - 5 + 5 = 15 + 5	
20	3x = 20	
3		1
	$\frac{3}{3}x = \frac{20}{3}$	
	20	
	$x = \frac{1}{3}$	
	$x = \frac{20}{3}$ $3x - 5(2) = 15$	
	3x - 10 = 15	
	3x - 10 + 10 = 15 + 10	
25	3x = 25	
$\frac{25}{3}$		2
	$\frac{3}{3}x = \frac{25}{3}$	
	$x = \frac{25}{3}$	
	3x - 5(3) = 15	
	3x - 15 = 15	
10	3x - 15 + 15 = 15 + 15	3
	3x = 30	
	x = 10	
	3x - 5(4) = 15	
	3x - 20 = 15	
	3x - 20 + 20 = 15 + 20	
35	3x = 35	
3	3 35	4
	$\frac{3}{3}x = \frac{35}{3}$	
	35	
	$x = \frac{35}{3}$	
	3x - 5(5) = 15	
	3x - 25 = 15	
	3x - 25 + 25 = 15 + 25	
40	3x = 40	5
3	3 40	,
	$\frac{1}{3}x = \frac{1}{3}$	
	$\frac{3}{3}x = \frac{40}{3}$ $x = \frac{40}{3}$	
	$\lambda - \frac{1}{3}$	

