Linear Equations in x

1. Is 8 a solution to $\frac{1}{2}x + 9 = 13$? Explain.

2. Write three different equations that have x = 5 as a solution.

3. Is -3 a solution to the equation 3x - 5 = 4 + 2x? Explain.

- 1. Given that 2x + 7 = 27 and 3x + 1 = 28, does 2x + 7 = 3x + 1? Explain.
- 2. Is -5 a solution to the equation 6x + 5 = 5x + 8 + 2x? Explain.
- 3. Does x = 1.6 satisfy the equation $6 4x = -\frac{x}{4}$? Explain.
 - Use the linear equation 3(x + 1) = 3x + 3 to answer parts (a)–(d).
 - a. Does x = 5 satisfy the equation above? Explain.
 - b. Is x = -8 a solution of the equation above? Explain.
 - c. Is $x = \frac{1}{2}$ a solution of the equation above? Explain.
 - d. What interesting fact about the equation 3(x + 1) = 3x + 3 is illuminated by the answers to parts (a), (b), and (c)? Why do you think this is true?

1. Is 8 a solution to $\frac{1}{2}x + 9 = 13$? Explain.

If we replace x with the number 8, then the left side is $\frac{1}{2}(8) + 9 = 4 + 9 = 13$, and the right side is 13. Since 13 = 13, then x = 8 is a solution.

2. Write three different equations that have x = 5 as a solution.

Answers will vary. Accept equations where x = 5 makes a true number sentence.

3. Is -3 a solution to the equation 3x - 5 = 4 + 2x? Explain.

If we replace x with the number -3, then the left side is 3(-3) - 5 = -9 - 5 = -14. The right side is 4 + 2(-3) = 4 - 6 = -2. Since $-14 \neq -2$, then -3 is not a solution of the equation.

Students practice determining whether or not a given number is a solution to the linear equation.

1. Given that 2x + 7 = 27 and 3x + 1 = 28, does 2x + 7 = 3x + 1? Explain.

No, because a linear equation is a statement about equality. We are given that 2x + 7 = 27, but 3x + 1 = 28. Since each linear expression is equal to a different number, $2x + 7 \neq 3x + 1$.

2. Is -5 a solution to the equation 6x + 5 = 5x + 8 + 2x? Explain.

If we replace x with the number -5, then the left side of the equation is

$$6 \cdot (-5) + 5 = -30 + 5$$

= -25,

and the right side of the equation is

$$5 \cdot (-5) + 8 + 2 \cdot (-5) = -25 + 8 - 10$$

= -17 - 10
= -27.

Since $-25 \neq -27$, then -5 is not a solution of the equation 6x + 5 = 5x + 8 + 2x.

Note: Some students may have transformed the equation.

3. Does x = 1.6 satisfy the equation $6 - 4x = -\frac{x}{4}$? Explain.

If we replace x with the number 1.6, then the left side of the equation is

$$6 - 4 \cdot 1.6 = 6 - 6.4$$

= -0.4,

and the right side of the equation is

$$-\frac{1.6}{4} = -0.4.$$

Since -0.4=-0.4, then x=1.6 is a solution of the equation $6-4x=-\frac{x}{4}$

- Use the linear equation 3(x+1) = 3x + 3 to answer parts (a)–(d).
 - Does x = 5 satisfy the equation above? Explain.

If we replace x with the number 5, then the left side of the equation is

$$3(5+1) = 3(6)$$

= 18,

and the right side of the equation is

$$3x + 3 = 3 \cdot 5 + 3$$

= 15 + 3
= 18.

Since 18 = 18, then x = 5 is a solution of the equation 3(x + 1) = 3x + 3.

Is x = -8 a solution of the equation above? Explain.

If we replace x with the number -8, then the left side of the equation is

$$3(-8+1) = 3(-7)$$

= -21,

and the right side of the equation is

$$3x + 3 = 3 \cdot (-8) + 3$$

= -24 + 3
= -21

Since -21 = -21, then x = -8 is a solution of the equation 3(x + 1) = 3x + 3.

c. Is $x = \frac{1}{2}$ a solution of the equation above? Explain.

If we replace x with the number $\frac{1}{2}$, then the left side of the equation is

$$3\left(\frac{1}{2}+1\right) = 3\left(\frac{1}{2}+\frac{2}{2}\right)$$
$$= 3\left(\frac{3}{2}\right)$$
$$= \frac{9}{2},$$

and the right side of the equation is

$$3x + 3 = 3 \cdot \left(\frac{1}{2}\right) + 3$$
$$= \frac{3}{2} + 3$$
$$= \frac{3}{2} + \frac{6}{2}$$
$$= \frac{9}{2}.$$

Since $\frac{9}{2} = \frac{9}{2}$, then $x = \frac{1}{2}$ is a solution of the equation 3(x+1) = 3x + 3.

What interesting fact about the equation 3(x+1) = 3x + 3 is illuminated by the answers to parts (a), (b), and (c)? Why do you think this is true?

Note to teacher: Ideally, students will notice that the equation 3(x+1) = 3x + 3 is an identity under the distributive law. The purpose of this problem is to prepare students for the idea that linear equations can have more than one solution, which is a topic of Lesson 7.