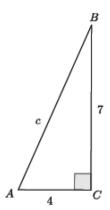
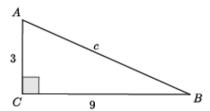
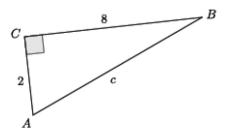
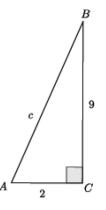
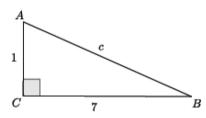

Informal Proof of the Pythagorean Theorem

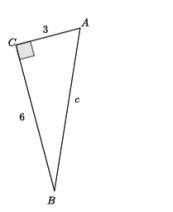

1. Label the sides of the right triangle with leg, leg, and hypotenuse.

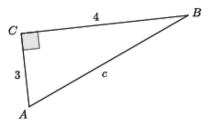

Determine the length of c in the triangle shown.

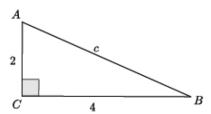


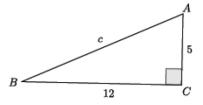

Determine the length of \boldsymbol{c} in the triangle shown.

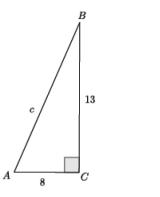

For each of the problems below, determine the length of the hypotenuse of the right triangle shown. Note: Figures not drawn to scale.

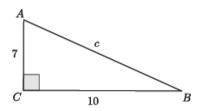


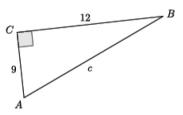

4.

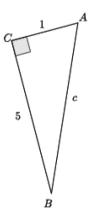



5.

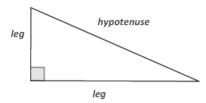

6.



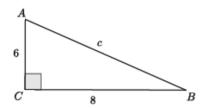

9.



10.



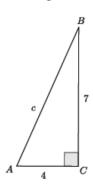
11.



Label the sides of the right triangle with leg, leg, and hypotenuse.

Determine the length of c in the triangle shown.

$$a^{2} + b^{2} = c^{2}$$

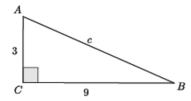

$$6^{2} + 8^{2} = c^{2}$$

$$36 + 64 = c^{2}$$

$$100 = c^{2}$$

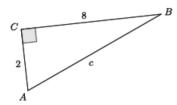
$$10 = c$$

Determine the length of c in the triangle shown.

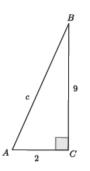


$$a^{2} + b^{2} = c^{2}$$
 $4^{2} + 7^{2} = c^{2}$
 $16 + 49 = c^{2}$
 $65 = c^{2}$

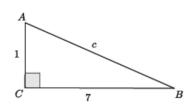
Students practice using the Pythagorean theorem to find the length of the hypotenuse of a right triangle.


For each of the problems below, determine the length of the hypotenuse of the right triangle shown. Note: Figures not drawn to scale.

1.

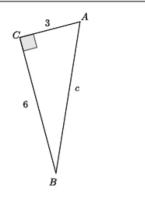

$$a^{2} + b^{2} = c^{2}$$
 $3^{2} + 9^{2} = c^{2}$
 $9 + 81 = c^{2}$
 $90 = c^{2}$

2.



$$a^{2} + b^{2} = c^{2}$$

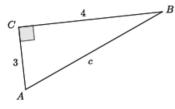
 $8^{2} + 2^{2} = c^{2}$
 $64 + 4 = c^{2}$
 $68 = c^{2}$


3.

$$a^{2} + b^{2} = c^{2}$$

 $9^{2} + 2^{2} = c^{2}$
 $81 + 4 = c^{2}$
 $85 = c^{2}$

$$a^{2} + b^{2} = c^{2}$$
 $7^{2} + 1^{2} = c^{2}$
 $49 + 1 = c^{2}$
 $50 = c^{2}$


$$a2 + b2 = c2$$

$$62 + 32 = c2$$

$$36 + 9 = c2$$

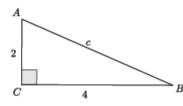
$$45 = c2$$

6.

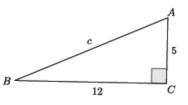
$$a^{2} + b^{2}$$

$$= c^{2}$$

$$4^{2} + 3^{2}$$


$$= c^{2}$$

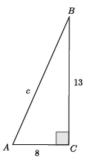
$$16 + 9 = c^{2}$$


$$25 = c^{2}$$

$$5 = c$$

7.

$$a^{2} + b^{2} = c^{2}$$
 $4^{2} + 2^{2} = c^{2}$
 $16 + 4 = c^{2}$
 $20 = c^{2}$

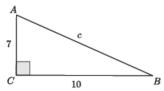

$$a^{2} + b^{2} = c^{2}$$

$$12^{2} + 5^{2} = c^{2}$$

$$144 + 25 = c^{2}$$

$$169 = c^{2}$$

$$13 = c$$

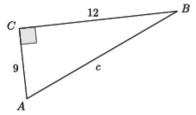

$$a^{2} + b^{2} = c^{2}$$

$$13^{2} + 8^{2} = c^{2}$$

$$169 + 64 = c^{2}$$

$$233 = c^{2}$$

10.

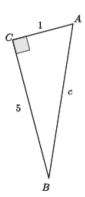

$$a^{2} + b^{2} = c^{2}$$

$$10^{2} + 7^{2} = c^{2}$$

$$100 + 49 = c^{2}$$

$$149 = c^{2}$$

11.


$$a^{2} + b^{2} = c^{2}$$

$$12^{2} + 9^{2} = c^{2}$$

$$144 + 81 = c^{2}$$

$$225 = c^{2}$$

$$15 = c$$

$$a^{2} + b^{2} = c^{2}$$

$$5^{2} + 1^{2} = c^{2}$$

$$25 + 1 = c^{2}$$

$$26 = c^{2}$$